Genética - a segunda Lei de Mendel
Segunda Lei de Mendel
A segunda lei de Mendel ou também enunciada por diibridismo, refere-se à segregação independente dos fatores, isto é, a separação de dois ou mais pares de genes alelos localizados em diferentes pares de cromossomos homólogos, para formação dos gametas.
O princípio para essa segregação tem suporte na anáfase I da divisão meiótica, instante em que ocorre o afastamento dos cromossomos homólogos (duplicados), paralelamente dispostos ao longo do fuso meiótico celular.
O princípio para essa segregação tem suporte na anáfase I da divisão meiótica, instante em que ocorre o afastamento dos cromossomos homólogos (duplicados), paralelamente dispostos ao longo do fuso meiótico celular.
Dessa forma, a proposição da segunda lei de Mendel, tem como fundamento a análise dos resultados decorrentes às possibilidades que envolvem não mais o estudo de uma característica isolada (Primeira Lei de Mendel), mas o comportamento fenotípico envolvendo duas ou mais características, em conseqüência da probabilidade (combinação) de agrupamentos distintos quanto à separação dos fatores (genes alelos / genótipo) na formação dos gametas.
Segue abaixo um exemplo prático da Segunda lei de Mendel:
Do cruzamento de ervilhas com características puras, em homozigose dominante e recessiva respectivamente para a cor da semente (amarela e verde) e para a textura da semente (lisa e rugosa), temos a seguinte representação para a geração parental e seus gametas:
RRVV (semente lisa e amarela) x rrvv (semente rugosa e verde)
Gameta → RV Gameta → rv
Desse cruzamento são originados exemplares vegetais de ervilha 100% heterozigóticas RrVv, com característica essencialmente lisa e amarela (geração F1 – primeira geração filial).
A partir do cruzamento entre organismos da geração F1, são formados tipos diferentes de gametas e combinações diversas para constituição dos indivíduos que irão surgir após a fecundação (geração F2).
Tipos de gametas da geração F1 → RV, Rv, rV e rv
Prováveis combinações entre os gametas:

Proporção fenotípica obtida:
9/16 → ervilhas com característica lisa e amarela;
3/16 → ervilhas com característica lisa e verde;
3/16 → ervilhas com característica rugosa e amarela;
1/16 → ervilhas com característica rugosa e verde.
Mendel concluiu que as características analisadas não dependiam uma das outras, portanto, são consideradas características independentes.
9/16 → ervilhas com característica lisa e amarela;
3/16 → ervilhas com característica lisa e verde;
3/16 → ervilhas com característica rugosa e amarela;
1/16 → ervilhas com característica rugosa e verde.
Mendel concluiu que as características analisadas não dependiam uma das outras, portanto, são consideradas características independentes.
Sistema ABO de grupos sanguíneos
A herança dos tipos sanguíneos do sistema ABO constitui um exemplo de alelos múltiplos na espécie humana.
![]()
Determinação dos grupos sanguíneos utilizando soros anti-A e anti-B. Amostra 1- sangue tipo A. Amostra 2 - sangue tipo B. Amostra 3 - sangue tipo AB. Amostra 4 - sangue tipo O.
| A descoberta dos grupos sanguíneos
Por volta de 1900, o médico austríaco Karl Landsteiner (1868 – 1943) verificou que, quando amostras de sangue de determinadas pessoas eram misturadas, as hemácias se juntavam, formando aglomerados semelhantes a coágulos. Landsteiner concluiu que determinadas pessoas têm sangues incompatíveis, e, de fato, as pesquisas posteriores revelaram a existência de diversos tipos sanguíneos, nos diferentes indivíduos da população.
Quando, em uma transfusão, uma pessoa recebe um tipo de sangue incompatível com o seu, as hemácias transferidas vão se aglutinando assim que penetram na circulação, formando aglomerados compactos que podem obstruir os capilares, prejudicando a circulação do sangue.
Aglutinogênios e aglutininas
No sistema ABO existem quatro tipos de sangues: A, B, AB e O. Esses tipos são caracterizados pela presença ou não de certas substâncias na membrana das hemácias, os aglutinogênios, e pela presença ou ausência de outras substâncias, as aglutininas, no plasma sanguíneo.
Existem dois tipos de aglutinogênio, A e B, e dois tipos de aglutinina, anti-A e anti-B. Pessoas do grupo A possuem aglutinogênio A, nas hemácias e aglutinina anti-B no plasma; as do grupo B têm aglutinogênio B nas hemácias e aglutinina anti-A no plasma; pessoas do grupo AB têm aglutinogênios A e B nas hemácias e nenhuma aglutinina no plasma; e pessoas do gripo O não tem aglutinogênios na hemácias, mas possuem as duas aglutininas, anti-A e anti-B, no plasma.
|
Veja na tabela abaixo a compatibilidade entre os diversos tipos de sangue:
ABO
|
Substâncias
|
%
|
Pode receber de
| ||||||||
Tipos
|
Aglutinogênio
|
Aglutinina
|
Frequência
|
A+
|
B+
|
AB+
|
0+
|
A-
|
B-
|
AB-
|
O-
|
AB+
|
A e B
|
Não Contém
|
3%
|
X
|
X
|
X
|
X
|
X
|
X
|
X
|
X
|
A+
|
A
|
Anti-B
|
34%
|
X
|
X
|
X
|
X
| ||||
B+
|
B
|
Anti-A
|
9%
|
X
|
X
|
X
|
X
| ||||
O+
|
Não Contém
|
Anti-A e Anti-B
|
38%
|
X
|
X
| ||||||
AB-
|
Ae B
|
Não Contém
|
1%
|
X
|
X
|
X
|
X
| ||||
A-
|
A
|
Anti-B
|
6%
|
X
|
X
| ||||||
B-
|
B
|
Anti-A
|
2%
|
X
|
X
| ||||||
O-
|
Não Contém
|
Anti-A e Anti-B
|
7%
|
X
|
Tipos possíveis de transfusão
As aglutinações que caracterizam as incompatibilidades sanguíneas do sistema acontecem quando uma pessoa possuidora de determinada aglutinina recebe sangue com o aglutinogênio correspondente.
Indivíduos do grupo A não podem doar sangue para indivíduos do grupo B, porque as hemácias A, ao entrarem na corrente sanguínea do receptor B, são imediatamente aglutinadas pelo anti-A nele presente. A recíproca é verdadeira: indivíduos do grupo B não podem doar sangue para indivíduos do grupo A. Tampouco indivíduos A, B ou AB podem doar sangue para indivíduos O, uma vez que estes têm aglutininas anti-A e anti-B, que aglutinam as hemácias portadoras de aglutinogênios A e B ou de ambos.
Assim, o aspecto realmente importante da transfusão é o tipo de aglutinogênio da hemácia do doador e o tipo de aglutinina do plasma do receptor. Indivíduos do tipo O podem doar sangue para qualquer pessoa, porque não possuem aglutinogênios A e B em suas hemácias. Indivíduos, AB, por outro lado, podem receber qualquer tipo de sangue, porque não possuem aglutininas no plasma. Por isso, indivíduos do grupo O são chamadas de doadores universais, enquanto os do tipo AB são receptores universais.
| ![]() |
Como ocorre a Herança dos Grupos Sanguíneos no Sistema ABO?
A produção de aglutinogênios A e B são determinadas, respectivamente, pelos genes I A e I B. Um terceiro gene, chamado i, condiciona a não produção de aglutinogênios. Trata-se, portanto de um caso de alelos múltiplos. Entre os genes I A e I B há co-dominância (I A = I B), mas cada um deles domina o gene i (I A > i e I B> i).
Fenótipos
|
Genótipos
|
A
|
I AI A ou I Ai
|
B
|
I BI B ou I Bi
|
AB
|
I AI B
|
O
|
ii
|
A partir desses conhecimentos fica claro que se uma pessoa do tipo sanguíneo A recebe sangue tipo B as hemácias contidas no sangue doado seriam aglutinadas pelas aglutininas anti-B do receptor e vice-versa.
O sistema MN de grupos sanguíneos
Dois outros antígenos foram encontrados na superfície das hemácias humanas, sendo denominados M e N. Analisando o sangue de diversas pessoas, verificou-se que em algumas existia apenas o antígeno M, em outras somente o N e várias pessoas possuíam os dois antígenos. Foi possível concluir então que existiam três grupos nesse sistema: M, N e MN.
|
Os genes que condicionam a produção desses antígenos são apenas dois: L M e L N (a letra L é a inicial do descobridor, Landsteiner). Trata-se de uma caso de herança mendeliana simples. O genótipo L ML M, condiciona a produção do antígeno M, e L NL N, a do antígeno N. Entre L M e L N há co-dominância, de modo que pessoas com genótipo L ML N produzem os dois tipos de antígenos.
|
Transfusões no Sistema MN
A produção de anticorpos anti-M ou anti-N ocorre somente após sensibilização (você verá isso no sistema RH). Assim, não haverá reação de incompatibilidade se uma pessoa que pertence ao grupo M, por exemplo, receber o sangue tipo N, a não ser que ela esteja sensibilizada por transfusões anteriores.
O sistema RH de grupos sanguíneos
Um terceiro sistema de grupos sanguíneos foi descoberto a partir dos experimentos desenvolvidos por Landsteiner e Wiener, em 1940, com sangue de macaco do gênero Rhesus. Esses pesquisadores verificaram que ao se injetar o sangue desse macaco em cobaias, havia produção de anticorpos para combater as hemácias introduzidas.
Ao centrifugar o sangue das cobaias obteve-se o soro que continha anticorpos anti-Rh e que poderia aglutinar as hemácias do macaco Rhesus. As conclusões daí obtidas levariam a descoberta de um antígeno de membrana que foi denominado Rh (Rhesus), que existia nesta espécie e não em outras como as de cobaia e, portanto, estimulavam a produção anticorpos, denominados anti-Rh.
Há neste momento uma inferência evolutiva: se as proteínas que existem nas hemácias de vários animais podem se assemelhar isto pode ser um indício de evolução. Na espécie humana, por exemplo, temos vários tipos de sistemas sanguíneos e que podem ser observados em outras espécies principalmente de macacos superiores.
Analisando o sangue de muitos indivíduos da espécie humana, Landsteiner verificou que, ao misturar gotas de sangue dos indivíduos com o soro contendo anti-Rh, cerca de 85% dos indivíduos apresentavam aglutinação (e pertenciam a raça branca) e 15% não apresentavam. Definiu-se, assim, "o grupo sanguíneo Rh +” ( apresentavam o antígeno Rh), e "o grupo Rh -" (não apresentavam o antígeno Rh).
No plasma não ocorre naturalmente o anticorpo anti-Rh, de modo semelhante ao que acontece no sistema Mn. O anticorpo, no entanto, pode ser formado se uma pessoa do grupo Rh -, recebe sangue de uma pessoa do grupo Rh +. Esse problema nas transfusões de sangue não são tão graves, a não ser que as transfusões ocorram repetidas vezes, como também é o caso do sistema MN.
A Herança do Sistema Rh
Três pares de genes estão envolvidos na herança do fator Rh, tratando-se portanto, de casos de alelos múltiplos.
Para simplificar, no entanto, considera-se o envolvimento de apenas um desses pares na produção do fator Rh, motivo pelo qual passa a ser considerado um caso de herança mendeliana simples. O gene R, dominante, determina a presença do fator Rh, enquanto o gene r, recessivo, condiciona a ausência do referido fator. |
|
Doença hemolítica do recém-nascido ou eritroblastose fetal
Uma doença provocada pelo fator Rh é a eritroblastose fetal ou doença hemolítica do recém-nascido, caracterizada pela destruição das hemácias do feto ou do recém-nascido. As conseqüências desta doença são graves, podendo levar a criança à morte.
Durante a gestação ocorre passagem, através da placenta, apenas de plasma da mãe para o filho e vice-versa devido à chamada barreira hemato-placentária. Pode ocorrer, entretanto, acidentes vasculares na placenta, o que permite a passagem de hemácias do feto para a circulação materna. Nos casos em que o feto possui sangue fator rh positivo os antígenos existentes em suas hemácias estimularão o sistema imune materno a produzir anticorpos anti-Rh que ficarão no plasma materno e podem, por serem da classe IgG, passar pela BHP provocando lise nas hemácias fetais. A produção de anticorpos obedece a uma cascata de eventos (ver imunidade humoral) e por isto a produção de anticorpos é lenta e a quantidade pequena num primeiro. A partir da segunda gestação, ou após a sensibilização por transfusão sanguínea, se o filho é Rh + novamente, o organismo materno já conterá anticorpos para aquele antígeno e o feto poderá desenvolver a DHPN ou eritroblastose fetal.
O diagnóstico pode ser feito pela tipagem sanguínea da mãe e do pai precocemente e durante a gestação o teste de Coombs que utiliza anti-anticorpo humano pode detectar se esta havendo a produção de anticorpos pela mãe e providências podem ser tomadas. Uma transfusão , recebendo sangue Rh -, pode ser feita até mesmo intra-útero já que Goiânia está se tornando referência em fertilização in vitro. O sangue Rh - não possui hemácias com fator Rh e não podem ser reconhecidas como estranhas e destruídas pelos anticorpos recebidos da mãe. Após cerca de 120 dias, as hemácias serão substituídas por outras produzidas pelo próprio indivíduo. O sangue novamente será do tipo Rh +, mas o feto já não correrá mais perigo

Após o nascimento da criança toma-se medida profilática injetando, na mãe Rh- , soro contendo anti Rh. A aplicação logo após o parto, destrói as hemácias fetais que possam ter passado pela placenta no nascimento ou antes. Evita-se , assim, a produção de anticorpos “zerando o placar de contagem”. Cada vez que um concepto nascer e for Rh+ deve-se fazer nova aplicação pois novos anticorpos serão formados.
Os sintomas no RN que podem ser observados são anemia (devida à destruição de hemácias pelos anticorpos), icterícia (a destruição de hemácias aumentada levará a produção maior de bilirrubina indireta que não pode ser convertida no fígado), e após sua persistência o aparecimento de uma doença chamada Kernicterus que corresponde ao depósito de bilirrubina nos núcleos da base cerebrais o que gerará retardo no RN.
Herança e sexo
Em condições normais, qualquer célula diplóide humana contém 23 pares de cromossomos homólogos, isto é,2n= 46. Desses cromossomos, 44 são autossomos e 2 são os cromossomos sexuais também conhecidos como heterossomos.
Autossomos e heterossomos
Os cromossomos autossômicos são os relacionados às características comuns aos dois sexos, enquanto os sexuais são os responsáveis pelas características próprias de cada sexo. A formação de órgãos somáticos, tais como fígado, baço, o estômago e outros, deve-se a genes localizados nos autossomos, visto que esses órgãos existem nos dois sexos. O conjunto haplóide de autossomos de uma célula é representado pela letra A. Por outro lado, a formação dos órgãos reprodutores, testículos e ovários, característicos de cada sexo, é condicionada por genes localizados nos cromossomos sexuais e são representados, de modo geral, por X e Y.O cromossomo Y é exclusivo do sexo masculino. O cromossomo X existe na mulher em dose dupla, enquanto no homem ele se encontra em dose simples.

Microscopia Eletrônica do cromossomo X e Y. Compare a diferença de tamanho de cada cromossomo.
Os cromossomos sexuais
O cromossomo Y é mais curto e possui menos genes que o cromossomo X, além de conter uma porção encurtada, em que existem genes exclusivos do sexo masculino. Observe na figura abaixo que uma parte do cromossomo X não possui alelos em Y, isto é, entre os dois cromossomos há uma região não-homóloga.

Determinação genética do sexo
O sistema XY
Em algumas espécies animais, incluindo a humana, a constituição genética dos indivíduos do sexo masculino é representada por 2AXY e a dos gametas por eles produzidos, AX e AY; na fêmea, cuja constituição genética é indicada por 2AXX, produzem-se apenas gametas AX.
No homem a constituição genética é representada por 44XY e a dos gametas por ele produzidos, 22X e 22Y; na mulher 44XX e os gametas, 22X. Indivíduos que forma só um tipo de gameta, quanto aos cromossomos sexuais, são denominados homogaméticos. Os que produzem dois tipo são chamados de heterogaméticos. Na espécie humana, o sexo feminino é homogamético, enquanto o sexo masculino é heterogamético.

Mecanismo de compensação de dose
Em 1949, o pesquisador inglês Murray Barr descobriu que há uma diferença entre os núcleos interfásicos das células masculinas e femininas: na periferia dos núcleos das células femininas dos mamíferos existe uma massa de cromatina que não existe nas células masculinas. Essa cromatina possibilita identificar o sexo celular dos indivíduos pelo simples exame dos núcleos interfásicos: a ela dá-se o nome de cromatina sexualou corpúsculo de Barr.
A partir da década de 1960, evidências permitiram que a pesquisadora inglesa Mary Lyon levantasse a hipótese de que cada corpúsculo de Barr forre um cromossomo X que, na célula interfásica, se espirala e se torna inativo, dessa forma esse corpúsculo cora-se mais intensamente que todos os demais cromossomos, que se encontram ativos e na forma desespiralada de fios de cromatina.
Segundo a hipótese de Lyon, a inativação atinge ao acaso qualquer um dos dois cromossomos X da mulher, seja o proveniente do espermatozóide ou do óvulo dos progenitores. Alguns autores acreditam que a inativação de um cromossomo X da mulher seria uma forma de igualar a quantidade de genes nos dois sexos. A esse mecanismo chamam de compensação de dose. Como a inativação ocorre ao acaso e em uma fase do desenvolvimento na qual o número de células é relativamente pequeno, é de se esperar que metade das células de uma mulher tenha ativo o X de origem paterna, enquanto que a outra metade tenha o X de origem materna em funcionamento. Por isso, diz-se que as mulheres são “mosaicos”, pois – quanto aos cromossomos sexuais apresentam dois tipos de células.
A determinação do sexo nuclear (presença do corpúsculo de Barr) tem sido utilizada em jogos olímpicos, quando há dúvidas quanto ao sexo do indivíduo.
| ![]()
Compare quanto a presença do corpúsculo de Barr nas células masculinas (acima) com a células femininas (abaixo).
|
O sistema X0
Em algumas espécies, principalmente em insetos, o macho não tem o cromossomo Y, somente o X; a fêmea continua portadora do par cromossômico sexual X. Pela ausência do cromossomo sexual Y, chamamos a esse sistema de sistema X0. As fêmeas são representadas por 2A + XX (homogaméticas) e os machos 2A + X0 (heterogaméticos).

O Sistema ZW
Em muitas aves (inclusive os nossos conhecidos galos e galinhas), borboletas e alguns peixes, a composição cromossômica do sexo é oposta à que acabamos de estudar: o sexo homogamético é o masculino, enquanto as fêmeas são heterogaméticas. Também a simbologia utilizada, nesse caso, para não causar confusão com o sistema XY, é diferente: os cromossomos sexuais dos machos são representados por ZZ, enquanto nas fêmeas os cromossomos sexuais são representados por ZW.
Abelhas e Partenogênese
Nas abelhas, a determinação sexual difere acentuadamente da que até agora foi estudada. Nesses insetos, o sexo não depende da presença de cromossomos sexuais, e sim da ploidia. Assim, os machos (zangões) são sempre haplóides, enquanto as fêmeas são diplóides. A rainha é a única fêmea fértil da colméia, e por meiose, produz centenas de óvulos, muitos dos quais serão fecundados. Óvulos fecundados originam zigotos que se desenvolvem em fêmeas.
Se na fase larval, essas fêmeas receberem uma alimentação especial, trasnformar-se-ão em novas rainhas. Caso contrário, se desenvolverão em operárias, que são estéreis.
| ![]() |
Os óvulos não fecundados desenvolvem-se por mitose em machos haplóides. Esse processo é chamado de partenogênese (do grego, partheno = virgem, gênesis = origem), ou seja, é considerado um processo de desenvolvimento de óvulos não-fertilizados em indivíduos adultos haplóides.
Determinação do sexo em plantas
Grande parte das plantas produz flores hermafroditas, que contém tanto estruturas reprodutoras masculinas como femininas. Plantas desse tipo são monóicas (do grego mono, um, e oikos, casa), termo que significa “uma casa para dois sexos”. Outras espécies têm sexos separados, com plantas que produzem flores masculinas e plantas que produzem flores femininas. Essas espécies são denominadas dióicas (do grego di,duas, e oikos, casa), termo que significa “duas casas, uma para cada sexo”.

Nas plantas dióicas os sexos são determinados de forma semelhante a dos animais. O espinafre e o cânhamo, por exemplo, têm sistema XY de determinação do sexo; já o morando segue o sistema ZW.
Organismos que não tem sistema de determinação do sexo
Os organismos monóicos (hermafroditas) não apresentam qualquer sistema de determinação cromossômica ou genética de sexo. Todos os indivíduos da espécie têm, basicamente, o mesmo cariótipo. Esse é o caso da maioria das plantas e de animais como minhocas, caramujos e caracóis.
Herança de genes localizados no cromossomo X
Herança ligada ao sexo em drosófila
Em 1910, Morgan estudou uma macho de drosófila portador de olho branco, originado de uma mutação do olho selvagem, que tem cor marrom avermelhada. O cruzamento desse macho de olho branco (white) com fêmeas de olho selvagem originou, na geração F1, apenas descendentes de olho selvagem.
O cruzamento de machos e fêmeas da geração F1 resultou em uma geração F2 constituída por fêmeas de olho selvagem, machos de olho selavagem e machos de olho branco. A proporção de moscas de olho selvagem e moscas de olho branco foi de aproximadamente 3:1, o que permitiu concluir que a característica olho branco era hereditária e recessiva.
Morgan voltou sua atenção para o fato de não ter nascido nenhuma fêmea de olho branco na geração F2. Isso indicava que a característica em questão tinha alguma relação com o sexo dos indivíduos. Na sequência dos experimentos, Morgan cruzou machos de olho branco com as suas próprias filhas, que eram heterozigotas em relação à cor do olho. Desse cruzamento surgiram fêmeas e machos de olho selvagem, e fêmeas e machos de olho branco, na proporção 1:1:1:1. Esse resultado mostrou que o caráter olho branco podia aparecer também nas fêmeas.
Como explicar, então a ausência de fêmeas de olho branco na geração F2 do primeiro cruzamento?

Em 1911, Morgan concluiu que os resultados dos cruzamentos envolvendo o loco da cor do olho, em drosófila, podiam ser explicados admitindo-se que ele estivesse localizado no cromossomo X. O macho de olho branco original teria fornecido seu cromossomo X, portador do alelo recessivo mutante w (Xw), a todas as filhas que receberam seu outro cromossomo X das mães, portadoras do alelo selvagem W (XW). As fêmeas da geração F1 seriam, portanto, heterozigotas XWXw. Já os machos de F1 receberam o cromossomo X das fêmeas selvagens puras (XW). Sua constituição gênica seria, portanto XWY.
A hipótese de Morgan foi confirmada pela análise de outros genes de drosófila, cuja herança seguia o mesmo padrão. Além disso, permitiu também explicar a herança de genes relacionados com o sexo em outras espécies. Os genes localizados no cromossomo X, que não têm alelo correspondente no cromossomo Yseguem o que se denomina herança ligada ao sexo ou herança ligada ao X.
Herança ligada ao sexo
Habitualmente, classificam-se os casos de herança relacionada com o sexo de acordo com a posição ocupada pelos genes, nos cromossomos sexuais. Para tanto, vamos dividi-los em regiões:
A porção homóloga do cromossomo X possui genes que têm correspondência com os genes da porção homóloga do cromossomo Y. Portanto, há genes alelos entre X e Y, nessas regiões. Os genes da porção heteróloga do cromossomo X não encontram correspondência com os genes da porção heteróloga do cromossomo Y. Logo, não há genes alelos nessas regiões, quando um cromossomo X se emparelha com um cromossomo Y.
Herança ligada ao sexo é aquela determinada por genes localizados na região heteróloga do cromossomo X. Como as mulheres possuem dois cromossomos X, elas têm duas dessas regiões. Já os homens, como possuem apenas um cromossomo X (pois são XY), têm apenas um de cada gene. Um gene recessivo presente no cromossomo X de um homem irá se manifestar, uma vez que não há um alelo dominante que impeça a sua expressão.
Na espécie humana. os principais exemplos de herança ligada ao sexo são:
Daltonismo
Trata-se da incapacidade relativa na distinção de certas cores que, na sua forma clássica, geralmente cria confusão entre o verde e o vermelho.
É um distúrbio causado por um gene recessivo localizado na porção heteróloga do cromossomo X, o gene Xd, enquanto o seu alelo dominante XD determina a visão normal.
A mulher de genótipo XDXd, embora possua um gene para o daltonismo, não manifesta a doença, pois se trata de um gene recessivo. Ela é chamada de portadora do gene para o daltonismo. O homem de genótipo XdY, apesar de ter o gene Xdem dose simples, manifesta a doença pela ausência do alelo dominante capaz de impedir a expressão do gene recessivo.
|
|
O homem XdY não é nem homozigoto ou heterozigoto: é hemizigoto recessivo, pois do par de genes ele só possui um. O homem de genótipo XDY é hemizigoto dominante.

Se você consegue distinguir perfeitamente o número 74 entre as bolinhas da figura acima,
então você não é daltônico.
Hemofilia
É um distúrbio da coagulação sanguínea, em que falta o fator VIII, uma das proteínas envolvidas no processo, encontrado no plasma das pessoas normais. As pessoas hemofílicas têm uma tendência a apresentar hemorragias graves depois de traumatismos banais, como um pequeno ferimento ou uma extração dentária.O tratamento da hemofilia consiste na administração do fator VIII purificado ou de derivados de sangue em que ele pode ser encontrado (transfusões de sangue ou de plasma). Pelo uso frequente de sangue e de derivados, os pacientes hemofílicos apresentam uma elevada incidência de AIDS e de hepatite tipo B, doenças transmitidas através dessas vias.

A hemofilia atinge cerca de 300.000 pessoas. É condicionada por um gene recessivo, representado por h, localizado no cromossomo X. É pouco frequente o nascimento de mulheres hemofílicas, já que a mulher, para apresentar a doença, deve ser descendente de um homen doente (XhY) e de uma mulher portadora (XHXh) ou hemofílica (XhXh).
Como esse tipo de cruzamento é extremamente raro, acredita-se que praticamente inexistiriam mulheres hemofílicas. No entanto, já foram relatados casos de hemofílicas, contrariando assim a noção popular de que essas mulheres morreriam por hemorragia após a primeira menstruação (a interrupção do fluxo menstrual deve-se à contração dos vasos sanguíneos do endométrio, e não a coagulação do sangue).
Herança holândrica, ligada ao cromossomo Y ou herança restrita ao sexo
O cromossomo Y possui alguns genes que lhe são exclusivos, na porção encurvada que não é homóloga ao X. Esses genes, também conhecidos como genes holândricos, caracterizam a chamada herança restrita ao sexo.
Não há duvidas de que a masculinização está ligada ao cromossomo Y. Um gene que tem um papel importante nesse fato é o TDF ( iniciais de testis-determining factor), também chamado de SRY (iniciais de sex-determining region of Y chromossome), que codifica o fator determinante de testículos. O gene TDF já foi identificado e está localizado na região não-homóloga do cromossomo Y.
Tradicionalmente, a hipertricose, ou seja, presença de pelos no pavilhão auditivo dos homens, era citada como um exemplo de herança restrita ao sexo. No entanto, a evidência que a hipertricose deve-se a uma herança ligada ao Y está sendo considerada inconclusiva, pois, em algumas famílias estudadas, os pais com hiperticose tiveram filhos homens com e sem pêlos nas bordas das orelhas.
Na herança restrita ao sexo verdadeira: Todo homem afetado é filho de um homem também afetado; todos os seus filhos serão afetados, e as filhas serão normais.
Nessa categoria, incluem-se as características determinadas por genes localizados nos cromossomos autossomos cuja expressão é, de alguma forma, influenciada pelo sexo do portador.
|
Nesse grupo, há diversas modalidades de herança, das quais ressaltaremos a mais conhecida, a dominância influenciada pelo sexo, herança em que, dentro do par de genes autossômicos, um deles é dominante nos homens e recessivo nas mulheres, e o inverso ocorre com o seu alelo. Na espécie humana, temos o caso da calvície.
|
Outras formas de herança autossômica influenciada pelo sexo são a penetrância influenciada pelo sexo e a expressividade influenciada pelo sexo. Na espécie humana, a ocorrência de malformações de vias urinárias apresenta uma penetrância muito maior entre os homens do que entre as mulheres. Elas, portanto, ainda que possuam o genótipo causador da anormalidade, podem não vir a manifestá-la. A expressividade também pode ser influenciada pelo sexo. Um exemplo bem conhecido é o do lábio leporino, falha de fechamento dos lábios. Entre os meninos, a doença assume intensidade maior que nas meninas, nas quais os defeitos geralmente são mais discretos.

Basicamente, há duas evidências que permitem suspeitar de um caso de herança relacionada com o sexo:
1º) Quando o cruzamento de um macho afetado com uma fêmea não afetada gera uma descendência diferente do cruzamento entre um macho não afetado com uma fêmea afetada.
2º) Quando a proporção fenotípica entre os descendentes do sexo masculino forem nitidamente diferentes da proporção nos descendentes do sexo feminino.
Comentários
Postar um comentário